Нейроны и синапсы

Содержание:

Основным компонентом нервной системы в целом и мозга в частности является нейрон или нервная клетка, «клетки мозга». Нейрон – это электрически возбудимая клетка, которая обрабатывает и передает информацию посредством электрохимической сигнализации.

В отличие от других клеток, нейроны никогда не делятся и не отмирают, чтобы их заменили новые. По той же причине они обычно не могут быть восстановлены после потери, хотя есть несколько исключений.

В отличие от других клеток организма, большинство нейронов в человеческом мозге способны делиться только для того, чтобы создавать новые клетки (процесс, называемый нейрогенезом) во время развития плода и в течение нескольких месяцев после рождения.

Эти клетки мозга могут увеличиваться в размерах до возраста около восемнадцати лет, но они, по существу, рассчитаны на всю жизнь.

Интересно, что единственной областью мозга, где нейрогенез, как было показано, продолжается на протяжении всей жизни, является гиппокамп, область, необходимая для кодирования и хранения памяти.

Объем памяти человека

Средний человеческий мозг имеет около 100 миллиардов нейронов (или нервных клеток) и нейроглии (или глиальные клетки), которые служат для поддержки и защиты нейронов.

Каждый нейрон может быть связан с 10 000 других нейронов, передавая сигналы друг другу через 1000 триллионов синаптических соединений, что, по некоторым оценкам, эквивалентно компьютеру с процессором со скоростью 1 триллион бит в секунду.

Оценки объема памяти человеческого мозга сильно варьируются от 1 до 1000 терабайт (для сравнения, 19 миллионов томов в Библиотеке Конгресса США представляют около 10 терабайт данных).

Обзор механизмов и принципов передачи информации в мозге, работа памяти человека.

Передача информации в мозге, например, во время процессов кодирования и извлечения памяти, достигается с помощью комбинации химических веществ и электричества. Это очень сложный процесс, включающий множество взаимосвязанных этапов, но краткий обзор можно произвести.

Схема нейрона
Схема нейрона. Изображение из Википедии

Типичный нейрон обладает сомой (клеточным телом содержащим клеточное ядро), дендритами (Дендрит — ветвящийся отросток нервной клетки (нейрона), воспринимающий сигналы от других нейронов, рецепторных клеток или непосредственно от внешних раздражителей.) (разветвлёнными отростками, прикрепленными к клеточному телу в сложном ветвящемся «дендритном дереве») и одним аксоном (Аксон — это нейрит (длинный цилиндрический отросток нервной клетки), по которому нервные импульсы идут от тела клетки (сомы) к иннервируемым органам и другим нервным клеткам.) (длинным цилиндрическим отростком, который может быть в тысячи раз длиннее сомы).

Каждый нейрон поддерживает градиент напряжения на своей мембране из-за метаболически обусловленных различий в ионах натрия, калия, хлорида и кальция внутри клетки, каждый из которых имеет различный заряд.

Если напряжение существенно изменяется, генерируется электрохимический импульс, называемый потенциалом действия (или нервным импульсом). Эта электрическая активность может быть измерена и отображена в виде волновой формы, называемой мозговой волной или ритмом мозга.

Этот импульс быстро распространяется по аксону клетки и передается через специализированное соединение, известное как синапс (Синапс — место контакта между двумя нейронами или между нейроном и получающей сигнал эффекторной клеткой.) , к соседнему нейрону, который получает его через свои дендриты.

Синапс представляет собой сложное мембранное соединение или разрыв (фактический разрыв, также известный как синаптическая щель, составляет порядка 20 нанометров, или 20 миллионных миллиметра), используется для передачи сигналов между клетками, и поэтому известен как синаптическая связь.

Хотя синаптические связи аксон-дендрит являются нормой, возможны и другие варианты (например, дендрит-дендрит, аксон-аксон, дендрит-аксон). Типичный нейрон срабатывает 5 – 50 раз каждую секунду.

Таким образом, каждый отдельный нейрон может образовывать тысячи связей с другими нейронами, давая мозгу более 100 триллионов синапсов (до 1000 триллионов, по некоторым оценкам).

Функционально связанные нейроны соединяются друг с другом, образуя нейронные сети. Однако связи между нейронами не статичны, они меняются со временем.

Чем больше сигналов посылается между двумя нейронами, тем сильнее растет связь, и поэтому с каждым новым опытом и каждым запоминающимся событием или фактом мозг слегка перестраивает свою физическую структуру.

В детстве, и особенно в подростковом возрасте, происходит процесс, известный как «синаптическая обрезка».

Несмотря на то, что мозг продолжает расти и развиваться, общее количество нейронов и синапсов сокращается до 50%, удаляя ненужные нейронные структуры и позволяя им заменяться более сложными и эффективными структурами, более подходящими к требований взрослой жизни.

Синаптическая передача
Синаптическая передача. Изображение из Википедии

Взаимодействие нейронов не только электрическое, но и электрохимическое. Каждый аксонный терминал содержит тысячи связанных мембраной мешочков, называемых везикулами (Синаптические везикулы (или синаптические пузырьки) находятся в пресинаптических границах в нейронах и складируют нейромедиаторы.) , которые, в свою очередь, содержат тысячи молекул нейротрансмиттеров (Нейромедиаторы (нейротрансмиттеры, посредники, «медиаторы») — биологически активные химические вещества, посредством которых осуществляется передача электрохимического импульса от нервной клетки через синаптическое пространство между нейронами, а также, например, от нейронов к мышечной ткани или железистым клеткам.) .

Нейротрансмиттеры – это химические посыльные которые передают, усиливают и модулируют сигналы между нейронами и другими клетками.

  • Двумя наиболее распространенными нейротрансмиттерами в мозге являются аминокислоты глутамат и ГАМК;
  • другими важными нейротрансмиттерами являются ацетилхолин, допамин, адреналин, гистамин, серотонин и мелатонин.

При стимуляции электрическим импульсом высвобождаются нейромедиаторы различных типов и пересекают клеточную мембрану в синаптическую щель между нейронами.

Эти химические вещества затем связываются с химическими рецепторами в дендритах принимающего (постсинаптического) нейрона.

В процессе они вызывают изменения проницаемости клеточной мембраны для конкретных ионов, открывая специальные ворота или каналы, которые впускают поток заряженных частиц (ионы кальция, натрия, калия и хлорида).

Это влияет на потенциальный заряд принимающего нейрона, который затем запускает новый электрический сигнал в принимающем нейроне. Весь процесс занимает менее одной пятисотой секунды.

Таким образом, сообщение в мозгу преобразуется, когда оно перемещается от одного нейрона к другому, от электрического сигнала к химическому сигналу и обратно, в непрерывную цепь событий, которая является основой всей деятельности мозга.

Электрохимический сигнал выпущенный определенным нейротрансмиттером может быть как стимулирующим (например, ацетилхолин, глутамат, аспартат, норадреналин, гистамин), так и ингибирующим (например, ГАМК, глицин, сератонин), а некоторые (например, дофамин) могут оказывать и то и другое действие.

Тонкие вариации в механизмах нейромедиации позволяют мозгу реагировать на различные требования, предъявляемые к нему, включая кодирование, консолидацию, хранение и извлечение воспоминаний.

Общие сведения о глиальных клетках (нейроглия, глия)

Как уже упоминалось, помимо нейронов, мозг содержит примерно равную массу глиальных клеток (нейроглия или просто глия), наиболее распространенными типами которых являются олигодендроциты, астроциты (Астроцит — тип нейроглиальной клетки звездчатой формы с многочисленными отростками.) и микроглии.

Поскольку они намного меньше, чем нейроны, их в 10 раз больше, а различные области мозга имеют более высокую или более низкую концентрацию глий.

Раньше считалось, что роль глиальных (Нейроглия (глия) — совокупность вспомогательных клеток нервной ткани. Составляет около 40 % объёма ЦНС. Количество глиальных клеток в мозге примерно равно количеству нейронов.) клеток ограничивается физической поддержкой, питанием и восстановлением нейронов центральной нервной системы.

Тем не менее, более недавние исследования показывают, что глия, особенно астроциты, на самом деле выполняют гораздо более активную роль в коммуникации мозга и нейропластичности, хотя степень и механизм этой роли все еще неопределенны, и значительный объем современных исследований мозга в настоящее время сосредоточен на глиальных клетках.

Источники:
  1. NEURONS & SYNAPSES

Все материалы носят ознакомительный характер. [Отказ от ответственности krok8.com]